

WiFi 模块串口通信协议

(V3.2)

1 串口设置

- 采用串口通信(VCC、GND、RXD、TXD)。
- 通信波特率为9600,1个起始位,8个数据位,1个停止位,无奇偶校验位。

2 帧格式

表 2-1 帧格式列表

帧头	长度	命令码	数据域	校验和
(1Byte)	(2Byte)	(1Byte)	(nByte)	(1Byte)
0xfc				

- 长度: 帧格式中数据域的长度。
- 命令码: 是指电控和模块之间的操作命令, 主要命令如下表。

表 2-2 常用命令

	77 = - 1023 91	•
命令码	命令名称	传输方向
0x02	设备信息上报	MCU→模块
0x08	配网命令	MCU→模块
0x05	状态上报	MCU→模块
0x03	心跳	MCU←模块
0x04	状态查询	MCU←模块
0x07	状态控制	MCU ← 模块 MCU → 模块
0x06	产线测试命令	MCU→模块 MCU←模块
0x09	故障上报	MCU→模块
0x00	接收确认(Ack)	MCU→模块 MCU ← 模块

● **校验和:** 帧格式中除校验和外全部数值相加后取最低字节,即(帧头+长度+命令码+数据域) & 0xff。

3 数据域说明

3.1 设备信息上报(0x02)

上电后大约两秒后, MCU 发送"**设备信息上报(0x02)**"命令给模块,模块回复接收确认(Ack)并进入正常工作状态(间隔 5 秒心跳信息)。

注:虽然模块两秒内启动一般没问题,但为保险起见,建议上电后一直发,直到收到 Ack 为止。

	长度	名称	说明
 	1 Byte	平台标识	0x01: 智城云智平台
信	1 Byte	平台产品型号长度	0x06: 平台产品型号长度为6
息	6 Byte	平台产品型号	智城云智平台分配,参考属性表
上 报	1 Byte	产品 PIN 码长度	0x20: 产品 PIN 码长度为 32
数 据	32 Byte	产品 PIN 码	智城云智平台分配,参考属性表
	4 Byte	MCU 固件版本	0x01 0x00 0x00 0x01(1.0.0.1)

3.2 配网命令(0x08)

配网功能是指模块连接路由器进。MUC 发送"配网命令(0x08)"给模块,模块进入配网模式并等待 App 发送过来的路由器名称和密码,模块收到信息后连接路由器和云平台。注:模组会保存配网信息,所以不需要重复配网。

配网命令数据格式如下表:

配	长度	名称	说明
XX			
命			000 : 11 비표 [교
令	1 Byte	配网类型	0x00:退出配网
数			0x01:开始配网
据			

进入配网命令举例如下表:

命令码	命令名称	发送指令	指令说明	传输方向
0x08	配网命令	fc 00 01 08 01 06	0x01:进入配网模式	MCU→模块
01100	101.10H	fc 00 00 00 fc	接收确认 (Ack)	MCU←模块

退出配网命令举例如下表:

命令码	命令名称	发送指令	指令说明	传输方向
0x08	配网命令	fc 00 01 08 00 05	0x00:退出配网模式	MCU→模块

fc 00 00 00 fc 接收确认	(Ack)	MCU←模块
---------------------	-------	--------

3.3 心跳 (0x03)

模组开始工作后每 5 秒会向 MCU 发送心跳,心跳中包含模组的状态信息。**此命令不需要 MCU 回复模块。**心跳数据格式如下表所示。

	长	度	名称	说明
	1Byte	$Bit[4^{\sim}7]$	配网状态	0=不处于配网状态
		DIUL4 []	自己的人心	1=处于配网状态
				0=无
		Bit[1~3]	 信号强度	1=弱
		DIULI 9]	1百分別及	2=中
心				3=强
跳		Bit[0]	在线状态	0=离线
数		DICLO	1年线状态	1=在线
据	1Byte	Bit[4~7]	保留	
				0=已连接路由器
				1=未连接路由器
				2=连接中
		Bit[0~3]	连接状态	3=正在获取 IP 地址
				4=密码错误
				5=AP 未找到
				6=连接失败

心跳命今举例加下表,

心则即令年的如下衣:				
命令码	命令名称	发送指令	指令说明	传输方向
0x03	心跳	fc 00 02 03 05 00 06	0x05:在线、中等信 号强度、不处于配 网状态 0x00:已连接路由器	MCU←模块
			无	MCU→模块

3.4 状态查询(0x04)

模组发送该消息查询 MCU 的状态,MCU 返回应答指令后通过"状态上报(0x05)"命令上报所有属性的属性值。

状态查询命令举例如下表:

会会和	会会夕称	岩洋 地	地 本 沿 田	-
	卸令名称		佰令况明	1支非

0x04	状态查询	fc 00 00 04 00	固定格式	MCU←模块
0110 1		fc 00 00 00 fc	接收确认 (Ack)	MCU→模块

3.5 状态上报(0x05)

MCU 通过"状态上报(0x05)"命令将设备的状态上报给模块,主要有两种情况:自身状态变化,仅需上报变化的状态;响应模组的状态查询命令,上报全部状态。

状态上报数据格式如下表:

	长度	名称	说明
状 态 上	1Byte	数值类型	0x00:整型
一报 数据 项 1	1Byte	属性值长度	0x04:4 个字节 整型值长度对应取的值 范围: 0x01(-128 [~] 127) 0x02(-32768 [~] 32767) 0x04(-2 ^{31~} 2 ³¹ -1)
	2Byte	属性 ID	参考属性表
	等于属性值长度	属性值	参考属性表
项			
2			
项			
n			

状态上报命令举例如下表:

	命令码	命令名称	发送指令	指令说明	传输方向
	0x05		fc 00 08 05 00 04 00	属性 ID=19(0x13)	MCU→模块
		状态上报	13 00 00 00 02 22	发送属性值 2(0x02)	
			fc 00 00 00 fc	接收确认(Ack)	MCU←模块

3.6 状态控制(0x07)

模组会将来自 APP 的控制命令通过该消息发送给设备,**控制之后 MCU 需要回传控制** 结果给模组。

模块通过"**状态控制(0x07)**"命令将 App 的控制指令发给 MCU, MCU 在控制之后如果状态发生改变需要通过状态上报消息将状态同步给 APP。

状态控制数据格式如下表:

	长度	名称	说明
状态	1Byte	数值类型	0x00:整型
控制数据	1Byte	属性值长度	0x04:4 个字节 整型值长度对应取的值 范围: 0x01(-128~127) 0x02(-32768~32767) 0x04(-2 ^{31~} 2 ³¹ -1)
	2Byte	属性 ID	参考属性表
	等于属性值长度	属性值	参考属性表

状态控制命令举例下表:

命令码	命令名称	发送指令	指令说明	传输方
				向
		fc 00 08 07 00 04 00	属性 ID=18(0x12)	MCU←模
		12 00 00 00 03 24	发送属性值 3(0x03)	块
0x07	状态控制	fc 00 03 07 00 12 01	属性 ID=18(0x12)	
			控制成功(0x01)	
		08	(控制失败则为 0x00)	块

3.7 故障上报命令(0x09)

该消息配合云平台的故障统计功能使用,MCU 通过该消息将故障状态上报至云平台,手机 APP 会弹出消息警告。同时存在多个故障则发送多个故障码,消息体为空表示故障恢复。故障上报命令举例如下:

命令码	命令名称	发送指令	指令说明	传输方向
	+ <i>L</i> 7文 1 +D	fc 00 02 09 01 02 0a	故障码 1、2(为空则表示恢 MCU	MCU 本 樹柏
0x09		10 00 02 09 01 02 0a	复)	MCUフ作み
	命令	fc 00 00 00 fc	接收确认(Ack)	MCU→模块 MCU←模块

3.8 产线测试命令(0x06)

该命令用于产线生产时整机测试,验证模块串口线和射频线连接正常。测试方法: 将路由器的 SSID 名称修改成"test_ssid",MCU 发送产测命令(0x06)使模块进入产测模式,模块如果搜索到 SSID 名称为"test_ssid"的路由器则回应相应的 ssid 给 MCU,否则返回失败帧。

产线测试命令举例下表:

命令码	命令名称	发送指令	指令说明	传输方向
		fc 00 09 06 74 65 73 74 5f 73 73 69 64 dd	74 65 73 74 5f 73 73 69 64 (SSID 名称: test_ssid)	MCU→模块
0x06	产线测试命令	fc 00 0a 06 09 74 65 73 74 5f 73 73 69 64 e7 (成功) fc 00 01 06 00 03 (失败)	1 模块搜索到 test_ssid 路由器,则返回给 MCU 该路由器名称,产测成功(09为 SSID 的长度) 2 模组搜索不到相应的路由器,则返回失败帧给 MCU,产测失败	MCU←模块

4 附录

表 4-1 扩展命令

命令码	命令名称	发送指令	指令说明	传输方向
0x0c	恢复出厂	fc 00 03 0c 59 45 53 fc	清除模组路由器信息,并解除 手机用户和设备的绑定	MCU→模块
ONOC	设置	fc 00 00 00 fc	1 于机用厂和以备的绑定	MCU←模块
		fc 00 00 0b 07	请求当前时间	MCU←模块 MCU→模块
			年: 0x102016 (2000+16)	
	 获取网络		月: 0x088月	
0x0b	时间	fc 00 0b 0b 08 57 a5 98	日: 0x066 日	MCU 人 樹也
	H 1 1-1	df 10 08 06 0f 3b 1b 10	时: 0x0f-15点	MCUCI矢坎
			分: 0x3b59 分	MCU←模块 MCU→模块
			秒: 0x1b27 秒	

特殊说明:

1、**模组重发机制**:模组需要接收确认(ACK)的命令,如果没有收到 MCU 回复的接收确认(ACK),则会间隔 500 毫秒重发,最多发 3 次;

- 2、**设备信息上报**: MCU 上电后一定要发送设备信息上报, 否则模组无法开始正常工作;
- 3、**属性值长度**: 比如开关机用不到 4 个字节,用一个字节表示即可,协议中 4 个字节的属性值只是代表上报某个数值型属性最大可以用 4 个字节表示,一旦确定了某个属性的长度,之后上报的时候需要将该属性的所有字节上报,高字节暂时用不到也要填 0;
- 4、属性值的取值范围: 1 个字节(-128~127), 2 个字节(-32768~32767), 4 个字节(-2³1~2³1~1)。特别注意的是,由于协议考虑到接入设备有负数的情况,所以 1 个字节的范围是-128~127, 并不是 0~255, 所以如果属性值超过 127,则需要用两个字节表示此属性值, 比如 134 用两个字节表示为(16 进制)00 86;
- 5、**负数的表示:** 如果用到负数,以-18 为例,如果属性值用一个字节表示,则-18 表示为 256-18,如果属性值用两个字节表示,则-18 表示为 65536-18;
- 6、模组上电发送数据:模组上电后, 会发送 fa 00 00 02, MCU 可以忽略不计;
- 7、**状态上报组合命令**:状态上报可以分多次上报多个属性,也可以一次性将全部属性 上报,可以将多个属性的"状态上报数据"进行组合;
- 8、**产线测试命令**: MCU 可以用两种方式实现,一是用按键触发送此命令,二是上电后 发送完设备信息并得到 ACK 后再发送此命令。

5 修订记录

版本	修订日期	修订概述	修订人	评审人	审批人
V3. 1	2017. 2. 23	创建文档	沙勇		
V3. 2	2017. 6. 6	增加一些特殊说明	沙勇		